
54 The Delphi Magazine Issue 70

Gilding Pale Streams
This month we look at
extending the TStream class

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

We’re bang in the middle of
moving here at TurboPower.

Lots of moving boxes are sitting
around, the pictures on the wall
aren’t there any more, and people
are getting rid of years of accumu-
lated rubbish. We’ve got some
snazzy new offices in downtown
Colorado Springs (until now we’ve
been up on the North end of town
in a high tech corridor with
WorldCom, HP, Agilent and now
Intel). It’ll be good to be downtown
for a change: new lunchtime eater-
ies, everything within walking dis-
tance, a different kind of working
crowd. By the time you read this
we should have been there, up and
running, for several weeks.

And then to crown it all,
Wordware, my publishers, sent me
the proof of my book Tomes of
Delphi: Algorithms and Data Struc-
tures. They wanted it proofed and
indexed in one week. Unfortu-
nately the proof wasn’t very good,
and so I didn’t get away with just
indexing; I had to read the whole
thing and compare against my orig-
inal documents. Anyway, after a
hectic week or so, I managed to get
everything done (at least as much
as I could) and it has now gone off
to the printers. It should be avail-
able by the time you read this.

So, unfortunately, I have less
time than usual to write this article.
Since I’ve been hitting the heavy
stuff recently in these columns, I
thought I’d make this one a little
easier going, both for me to write
and for you to read.

Introduction
A couple of months back, I said
that, in my view, the TStream hier-
archy was one of the most impor-
tant class hierarchies provided by
Borland in the Delphi VCL. I’ve pro-
vided a few examples of this over
the years I’ve been writing these
columns (and, checking back with
my Collection 2000 CD, so has Brian
Long), but this month I want to

summarize and expand on this
theme. So, without further ado,
we’ll sit on the grassy bank al fresco
and look into streams.

The ancestor of the entire
stream hierarchy is of course the
TStream class. To most people, the
TStream class comprises the basic
interface: virtual abstract methods
to read a buffer (Read), to write a
buffer (Write), and to seek to a par-
ticular position in the stream
(Seek). There’s also a Position
property that, when read, provides
you with the current position of the
stream and, when written, simply
performs a Seek. There’s a Size
property as well that returns the
current size of the stream when
reading, and (from Delphi 3
onwards) truncates the stream on
being written to.

There is also a lot more going on
in the TStream class than you might
think. For starters, it contains the
entire streaming capabilities of
Delphi’s DFM files (and Kylix’s
XFM files): reading and writing
components, reading and writing
properties, and so on. My intent in
this article is not to explore the
component-writing capabilities of
TStream, though (for more informa-
tion on this, Brian Long wrote an
article on the subject back in 1996);
it is to expand on other stream
types we can devise and write.

The three basic methods used
with a stream (Read, Write, and
Seek) are all virtual and abstract,
meaning that TStream is itself an
abstract class: you cannot create
instances of it. These methods
should be overridden in the
descendants. The other two static
methods we’ll note are ReadBuffer
and WriteBuffer. These methods
are completely implemented in the
ancestor. The ReadBuffer method
differs from the Readmethod in that
it will raise an exception if it cannot
read the requested number of
bytes (the Read method will merely
return the number of bytes it did

manage to read from the stream).
ReadBuffer is a simple implementa-
tion: a call to Read followed by rais-
ing an exception if the number of
bytes read did not equal the
number requested. The Write and
WriteBuffer methods have the
same relationship.

The two main stream proper-
ties, Position and Size, are also
completely implemented in the
TStream ancestor. The implemen-
tations of the access methods for
the Position property (the getter
and setter, if you like) are trivial in
the extreme. They are coded as
simple calls to the Seek method:
the getter merely calls it with an
offset of zero from the current
position and returns the result, the
setter calls it with an offset of the
position wanted from the start of
the stream.

The getter for the Size property
is coded as three calls to Seek: the
first seeks to the current position
and saves the return value, the
second seeks to an offset of zero
from the end of the stream, and the
third seeks back to the original
position. The setter for the Size
property (remember: Delphi 3 and
above and Kylix only) is a virtual
method that does nothing in the
ancestor, and that presumably is
overridden in descendants where
setting size is a meaningful opera-
tion (it doesn’t make sense in a
read-only stream for example).
Notice though the reliance on the
Seek method. We’ll be discussing
how to get around this for streams
that cannot seek.

The TStream class, then, is a true
ancestor class. You must create
and instantiate descendants

June 2001 The Delphi Magazine 55

of TStream in order to provide
streaming capabilities to your
application. Delphi comes with
several descendants: a memory
stream, a string stream, a file
stream, a resource stream, a BLOB
stream, and so on. It must be said
that these form a fairly complete
hierarchy and it seems hard to
come up with others. Neverthe-
less, there’s a whole class of
stream descendants we can write,
as you’ll see.

Anyway, one I needed pretty well
straight away was a file stream that
remembered its own name. The
standard file stream doesn’t store
its name, so if an error occurs and
you want to use the filename as
part of an exception message,
you’re out of luck. This descendant
is extremely trivial to code (a
replaced Create constructor and a
new property to get at the file-
name) and is shown in Listing 1.

Writing Filters
We could, with enough time and
inclination, come up with other
trivial descendants like this but, in
reality, it hardly seems worth it. On
the other hand there’s a whole
class of descendants we could
write that would be meaningful.

These descendants are known as
filters.

Let’s take a simple example. Sup-
pose you wanted to write a stream
that compresses data as you write
to the stream (the stream being
viewed as a write-only stream).
Seems easy enough, provided you
have a handy compression algo-
rithm already implemented, but
from which stream would you
descend? A file stream, so that
writing to the stream writes com-
pressed data to disk? Sure, but
next week you might need to com-
press data being written to a BLOB.
Would you then have to copy the
same code but just make a descen-
dant of TBLOBStream instead? It cer-
tainly seems wasteful of effort.

Better is to write a filter. A filter
is a stream descendant that uses
an internal stream to which it dele-
gates all of its reads, writes and
seeks. It does not, in and of itself,
know how to read, write or seek; it

defers all that to an already open
stream that you provide when call-
ing the constructor. In this way,
your code does not actually see or
directly interact with the internal
stream, instead your requests are
filtered through the filter stream.
The filter stream may indeed alter
the data you see. The internal
stream may be a memory stream
or a file stream or any other type of
stream; it makes no difference.

Let’s see how this works with a
simple filter: a read-only filter. A
read-only filter only allows you to
read data from the stream. You
cannot write to it or even seek
within it: the stream should be
viewed as a sequence of bytes, a
flow of data; once read you can’t go
back and reread it.

This TStream descendant sounds
simple enough. Simply override

type
TaaFileStream = class(TFileStream)
{a file stream that remembers its name}
private
FName : string;

protected
public
constructor Create(const aFileName : string; aMode : word);
property Name : string read FName;

end;
constructor TaaFileStream.Create(const aFileName : string; aMode : word);
begin
FName := aFileName;
inherited Create(aFileName, aMode);

end;

➤ Listing 1: A file stream
that knows its name.

type
TaaReadFilter = class(TStream)
{a read-only filter}
private
FSize : longint;
FStream : TStream;
FGotSizeReq : boolean;

protected
public
constructor Create(aStream : TStream;
aSize : longint);

function Read(var Buffer; Count : longint) : longint;
override;

function Seek(Offset : longint; Origin : word) :
longint; override;

function Write(const Buffer; Count : longint) :
longint; override;

end;
constructor TaaReadFilter.Create(aStream : TStream;
aSize : longint);

begin
Assert(aStream <> nil,
'TaaReadFilter.Create: the stream cannot be nil');

inherited Create;
FStream := aStream;
if (aSize = -1) then
FSize := FStream.Size

else
FSize := aSize;

end;
function TaaReadFilter.Read(var Buffer; Count : longint) :
longint;

begin
Assert(not FGotSizeReq,
'TaaReadFilter.Read: cannot read whilst getting size');

Result := FStream.Read(Buffer, Count);
end;

function TaaReadFilter.Seek(Offset : longint; Origin : word)
: longint;

begin
case Origin of
soFromBeginning :
if FGotSizeReq then begin
Result := FStream.Position;
if (Offset = Result) then
Exit;

FGotSizeReq := false;
end;

soFromCurrent :
if (Offset = 0) and (not FGotSizeReq) then begin
Result := FStream.Position;
Exit;

end;
soFromEnd :
if (Offset = 0) and (not FGotSizeReq) then begin
Result := FSize;
FGotSizeReq := true;
Exit;

end;
else
Assert(false, Format(
'TaaReadFilter.Seek: invalid origin (%d)', [Origin]));

end;
Assert(false,
'TaaReadFilter.Seek: a read-only filter cannot seek');

Result := 0;
end;
function TaaReadFilter.Write(const Buffer; Count : longint)
: longint;

begin
Assert(false,
'TaaReadFilter.Write: a read-only filter cannot write');

Result := 0;
end;

➤ Listing 2:
The TaaReadFilter class.

56 The Delphi Magazine Issue 70

the Read method to pass read
requests to the underlying stream,
override the Write and Seek meth-
ods to raise exceptions. There is
one slight problem though: the
Seek method could be used in a
‘read-only’ sense. Where am I in the
stream? How big is the stream?
Both of these operations involve
calls to Seek. We are not altering
the position of the stream in these
cases, we are merely reading some
important values. Recall also how
the Size property get method
works: read the current position,
seek to the end to get the stream
size, seek to the original position.
We should therefore override Seek
to cater for these special cases:
reading the current position (Seek
is called with offset 0 and origin
soFromCurrent), seeking to the end
of the stream to get the stream size
(Seek is called with offset 0 and
origin soFromEnd), seeking to the
current position (Seek is called
with the offset equal to the current
position and the origin soFrom-
Beginning).

Unfortunately, we will have to
store some state for reading the
Size property: the last two calls to
Seek are designed to change the
position of the stream, albeit tem-
porarily. We will have to store the

fact that the seek to the end of the
stream took place, and then if the
very next call to a stream method is
not the one we’re expecting (a call
to reposition the stream where we
were), we’d raise an exception.

Listing 2 shows the resulting
TaaReadFilter class. As you can
see, the Create constructor takes in
another, already opened, stream. It
is this stream that will be our dele-
gate. The Read method merely calls
the Read method of the delegate
stream, unless the stream’s state is
in mid GetSize. The Write method
will raise an exception. The Seek
method is where the fun stuff we’ve
been discussing occurs. Notice
that if we’ve been asked to seek to
the end of the stream, we return
the previously determined size of
the stream (the Create constructor
accepts the size of the stream: zero
or more is the actual size, -1means
that we can read the size of the
stream from the stream itself, and
MaxLongint means that the stream
size is unknown).

Having written a read-only filter,
it is a matter of moments to design
a write-only stream. With such a
stream we can maintain the cur-
rent size of the stream quite easily:
just count up the number of bytes
written to the stream. We still have
to play the same games with the
Seek method, the Read method is
merely raises an exception,

whereas Write gets the underlying
stream to do the work. Listing 3
shows the implementation of the
TaaWriteFilter class.

Buffering Filters
Well, so far nothing really exciting.
Let’s now create a descendant of
the TaaReadFilter class. This
descendant will buffer the data in
the underlying stream for us. Why
do this? Well, there is one stream
class that calls out for it: the
TFileStream. Every call to Read in a
TFileStream is translated to call the
operating system API directly.
This is extremely inefficient.
Better would be to read the under-
lying stream in large buffers full
and then dole it out, as and when
required. This in turn should be
much more efficient: we are only
accessing the OS API once in a
while for large buffers (say 8Kb
worth), and the rest of the time
we’re just moving data around in
memory.

Listing 4 shows the TaaRead-
BufferFilter class. We obviously
need to override the Read method
to dole out data from our buffer,
filling it wherever required from
the underlying stream. The con-
structor therefore has to create
the buffer, the destructor to free it.
We also must override the Seek
method for one particular case:
getting the position of the filter.

type
TaaWriteFilter = class(TStream)
{a write-only filter}
private
FSize : longint;
FStream : TStream;
FGotSizeReq : boolean;

protected
public
constructor Create(aStream : TStream);
function Read(var Buffer; Count : longint) : longint;
override;

function Seek(Offset : longint; Origin : word) :
longint; override;

function Write(const Buffer; Count : longint) :
longint; override;

end;
constructor TaaWriteFilter.Create(aStream : TStream);
begin
Assert(aStream <> nil,
'TaaWriteFilter.Create: the stream cannot be nil');

inherited Create;
FStream := aStream;

end;
function TaaWriteFilter.Read(var Buffer; Count : longint) :
longint;

begin
Assert(false,
'TaaWriteFilter.Read: a write-only filter cannot read');

Result := 0;
end;
function TaaWriteFilter.Seek(Offset : longint; Origin :
word) : longint;

begin
case Origin of

soFromBeginning :
if FGotSizeReq then begin
Result := FSize;
if (Offset = Result) then
Exit;

FGotSizeReq := false;
end;

soFromCurrent :
if (Offset = 0) and (not FGotSizeReq) then begin
Result := FSize;
Exit;

end;
soFromEnd :
if (Offset = 0) and (not FGotSizeReq) then begin
Result := FSize;
FGotSizeReq := true;
Exit;

end;
else
Assert(false, Format('TaaWriteFilter.Seek: invalid ‘+
‘origin (%d)', [Origin]));

end;
Assert(false,
'TaaWriteFilter.Seek: a read-only filter cannot seek');

Result := 0;
end;
function TaaWriteFilter.Write(const Buffer; Count : longint)
: longint;

begin
Assert(not FGotSizeReq, ‘TaaWriteFilter.Write: cannot
write whilst getting size');

Result := FStream.Write(Buffer, Count);
inc(FSize, Result);

end;

➤ Listing 3:
The TaaWriteFilter class.

58 The Delphi Magazine Issue 70

Recall that we are reading the data
out of the stream in large buffers-
worth. The stream’s position is
therefore very inaccurate: it will
always report a multiple of our
buffer’s size and nothing else. We
therefore need to trap the request
for the current position (offset is
zero, origin is soFromCurrent) to
report where we are, as if the buffer
were not there.

Designing a write-only buffered
stream is a little more involved.
The Write method will accept data
into the buffer and, whenever
required, write it out to the under-
lying stream. Also, just like in the
read-only buffered stream case,
the constructor should allocate a
buffer and the destructor should
destroy it, but now the destructor
has some extra work to do.
Consider the problem: we half fill
up the buffer and then free the
stream. This data in the buffer only
has one chance to get written out
to the delegate stream: during
the Destroy method. We should
therefore make an attempt to write

it out before we start freeing the
buffer.

There’s another problem,
though. The Write method of a
TStream descendant is supposed to
signal that it couldn’t write all the
data by returning the number of
bytes it did manage to write. In gen-
eral, our buffered stream will
always manage to write data: it just
gets put in the buffer. So consider
the moment that you write data to
the buffered stream and it fills up
the buffer and has to write it out to
the underlying stream. This latter
stream returns that it could only
write less bytes than requested.
What should we do? We certainly
can’t return the number of bytes
that were written to the underlying
stream. Instead we return the
number of bytes that we managed
to add to the buffer to fill it up. We
also slide along the data in the
buffer so that it just contains data
that wasn’t written. If the underly-
ing stream were a file stream, and
we’ve just filled up the disk, our
buffer is full, and all subsequent
calls to Writewill return zero as the
number of bytes written. The
attempt to write the last buffer of

data in the Destroy is also guaran-
teed to fail in this case, but we can
do nothing here except ignore it
(we should not raise exceptions in
destructors: too many things go
wrong if you do that; for example,
the object being destroyed is not
freed if an exception is raised in
the destructor).

The TaaWriteBufferFilter class
is shown in Listing 5. Again we
need to override the Seek method
to calculate the corrected current
position of the filter since the
stream will again only report
multiples of the buffer size. Having
seen a couple of examples of filter
classes, we should show a brief bit
of code that explains how to use
them. Listing 6 demonstrates the
use of the buffered filters to copy
one file to another. Notice espe-
cially that you should not destroy
the stream being filtered until you
have destroyed the filter. Doing it
the other way round could lead to
access violations or seg faults.

Text Filters
You may view some of these filters
as being, well, dinky, and yearn for
something a little meatier. How

type
TaaReadBufferFilter = class(TaaReadFilter)
{a read-only buffered filter}
private
FBuffer : PChar;
FBufEnd : longint;
FBufPos : longint;

protected
function rbfReadBuffer : boolean;

public
constructor Create(aStream : TStream; aSize:longint);
destructor Destroy; override;
function Read(var Buffer; Count : longint) : longint;
override;

function Seek(Offset : longint; Origin : word) :
longint; override;

end;
constructor TaaReadBufferFilter.Create(aStream : TStream;
aSize : longint);

begin
inherited Create(aStream, aSize);
GetMem(FBuffer, BufferSize);

end;
destructor TaaReadBufferFilter.Destroy;
begin
if (FBuffer <> nil) then
FreeMem(FBuffer, BufferSize);

inherited Destroy;
end;
function TaaReadBufferFilter.rbfReadBuffer : boolean;
begin
{read the next bufferful from the stream}
FBufEnd := FStream.Read(FBuffer^, BufferSize);
FBufPos := 0;
{return true if at least one byte read, false otherwise}
Result := FBufEnd <> FBufPos;

end;
function TaaReadBufferFilter.Read(var Buffer; Count :
longint) : longint;

var
UserBuf : PChar;
BytesToGo : longint;
BytesToRead : longint;

begin
{reference the buffer as a PChar}

UserBuf := @Buffer;
{start the counter for the number of bytes read}
Result := 0;
{if needed, fill internal buffer from underlying stream}
if (FBufPos = FBufEnd) then
if not rbfReadBuffer then
Exit;

{calculate number of bytes to copy from internal buffer}
BytesToGo := Count;
BytesToRead := FBufEnd - FBufPos;
if (BytesToRead > BytesToGo) then
BytesToRead := BytesToGo;

{copy bytes from internal buffer to user buffer}
Move(FBuffer[FBufPos], UserBuf^, BytesToRead);
{adjust the counters}
inc(FBufPos, BytesToRead);
dec(BytesToGo, BytesToRead);
inc(Result, BytesToRead);
{while there are more bytes to copy, do so}
while (BytesToGo <> 0) do begin
{advance the user buffer}
inc(UserBuf, BytesToRead);
{fill the internal buffer from the underlying stream}
if not rbfReadBuffer then
Exit;

{calculate number of bytes to copy from internal buffer}
BytesToRead := FBufEnd - FBufPos;
if (BytesToRead > BytesToGo) then
BytesToRead := BytesToGo;

{copy bytes from internal buffer to user buffer}
Move(FBuffer^, UserBuf^, BytesToRead);
{adjust the counters}
inc(FBufPos, BytesToRead);
dec(BytesToGo, BytesToRead);
inc(Result, BytesToRead);

end;
end;
function TaaReadBufferFilter.Seek(Offset : longint;
Origin : word) : longint;

begin
if (Offset = 0) and (Origin = soFromCurrent) then
Result := FStream.Position - FBufEnd + FBufPos

else
Result := inherited Seek(Offset, Origin);

end;

➤ Listing 4:
The read-only buffered filter.

June 2001 The Delphi Magazine 59

about a filter that parses up the
underlying stream as text into
individual lines? Again we’d have
to write two descendant classes:
one for reading and one for writing.
Because we have no idea how
many characters there are per line
we’d have to do some buffering,
otherwise reading a line would be
too inefficient. We shall use the
buffered classes as ancestors, that
way we get the buffering we’d
require for free.

Let’s tackle the read-only text
filter to start with. With this filter it
doesn’t seem to make sense to
enable the Read method, and
instead we should write and pro-
vide a ReadLine method so that the
user can get an entire line in one go.
After all it’s the ability to read a text
file in terms of its lines that we’re
trying to achieve. However, I can
certainly see the need for the abil-
ity to read an arbitrary number of

bytes from a text stream, so we’ll
leave it implemented just in case.

Of course, all the real work will
be done in the ReadLine method.
This method will return a string
containing the current line. Ah, but
what terminates the current line? A
carriage return, line feed character
pair (CR/LF)? A single LF charac-
ter? In the Windows universe, it’s
the former delimiter, in the Linux
cosmos, the latter. What we’ll do is
to cater for both. ReadLine will
scan characters from the current

position until it reaches an LF char-
acter. It’ll then check the previous
character to see if it’s a CR charac-
ter. Either way it can calculate the
length of the line just read, create
the return string, and then posi-
tion the stream just after the CR/LF
or LF.

There’s one more problem,
though. How do we know that
we’ve reached the end of the

type
TaaWriteBufferFilter = class(TaaWriteFilter)
{a write-only buffered filter}
private
FBuffer : PChar;
FCurPos : PChar;

protected
function wbfWriteBuffer : boolean;

public
constructor Create(aStream : TStream);
destructor Destroy; override;
function Seek(Offset : longint; Origin : word) :
longint; override;

function Write(const Buffer; Count : longint) :
longint; override;

end;
constructor TaaWriteBufferFilter.Create(aStream : TStream);
begin
inherited Create(aStream);
GetMem(FBuffer, BufferSize);
FCurPos := FBuffer;

end;
destructor TaaWriteBufferFilter.Destroy;
begin
if (FBuffer <> nil) then begin
if (FCurPos <> FBuffer) then
wbfWriteBuffer;

FreeMem(FBuffer, BufferSize);
end;
inherited Destroy;

end;
function TaaWriteBufferFilter.wbfWriteBuffer : boolean;
var
BytesToWrite : longint;
BytesWritten : longint;

begin
BytesToWrite := FCurPos - FBuffer;
BytesWritten := FStream.Write(FBuffer^, BytesToWrite);
if (BytesWritten = BytesToWrite) then begin
Result := true;
FCurPos := FBuffer;

end else begin
Result := false;
if (BytesWritten <> 0) then begin
Move(FBuffer[BytesWritten], FBuffer^,
BytesToWrite - BytesWritten);

FCurPos := FBuffer + (BytesToWrite - BytesWritten);
end;

end;
end;
function TaaWriteBufferFilter.Seek(Offset : longint;

Origin : word) : longint;
begin
if (Offset = 0) and (Origin = soFromCurrent) then
Result := FStream.Position + (FCurPos - FBuffer)

else
Result := inherited Seek(Offset, Origin);

end;
function TaaWriteBufferFilter.Write(const Buffer;
Count : longint) : longint;

var
UserBuf : PChar;
BytesToGo : longint;
BytesToWrite : longint;

begin
{reference the buffer as a PChar}
UserBuf := @Buffer;
{start the counter for the number of bytes written}
Result := 0;
{if needed, empty internal buffer into underlying stream}
if (BufferSize = FCurPos - FBuffer) then
if not wbfWriteBuffer then
Exit;

{calculate number of bytes to copy to internal buffer}
BytesToGo := Count;
BytesToWrite := BufferSize - (FCurPos - FBuffer);
if (BytesToWrite > BytesToGo) then
BytesToWrite := BytesToGo;

{copy the bytes from user buffer to internal buffer}
Move(UserBuf^, FCurPos^, BytesToWrite);
{adjust the counters}
inc(FCurPos, BytesToWrite);
dec(BytesToGo, BytesToWrite);
inc(Result, BytesToWrite);
{while there are more bytes to copy, do so}
while (BytesToGo <> 0) do begin
{advance the user buffer}
inc(UserBuf, BytesToWrite);
{empty the internal buffer into the underlying stream}
if not wbfWriteBuffer then
Exit;

{calculate number of bytes to copy to internal buffer}
BytesToWrite := BufferSize;
if (BytesToWrite > BytesToGo) then
BytesToWrite := BytesToGo;

{copy bytes from user buffer to internal buffer}
Move(UserBuf^, FCurPos^, BytesToWrite);
{adjust the counters}
inc(FCurPos, BytesToWrite);
dec(BytesToGo, BytesToWrite);
inc(Result, BytesToWrite);

end;
end;

➤ Listing 5: The write-only
buffered filter. FSIn := nil;

FSOut := nil;
BFIn := nil;
BFOut := nil;
try
FSIn := TFileStream.Create('AAStrms.pas', fmOpenRead);
BFIn := TaaReadBufferFilter.Create(FSIn, -1);
FSOut := TFileStream.Create('test1.tst', fmCreate);
BFOut := TaaWriteBufferFilter.Create(FSOut);
BytesRead := BFIn.Read(B, sizeof(B));
while (BytesRead <> 0) do begin
BFOut.Write(B, BytesRead);
BytesRead := BFIn.Read(B, sizeof(B));

end;
finally
BFOut.Free;
FSOut.Free;
BFIn.Free;
FSIn.Free;

end;

➤ Listing 6: Simple use of the
buffered filters.

60 The Delphi Magazine Issue 70

stream? It reeks of the sledge-
hammer if we raise an exception
in the ReadLine method when that
point is reached. We could contin-
ually test to see if the value of the
Position property equals that of
the Size property, but, as I’m sure
you’re now aware, that would
require four calls to Seek for every
test. My preference is to have a
special function, called AtEndOf-
Stream, say, that returns true once
the end of the stream is reached.
Inside this function, we’ll test the
current position against the
pre-calculated size of the stream.

Listing 7 shows the TaaReadText-
Filter class. Remember the impor-
tant thing about this class: it can be
used with any other stream what-
soever. Obviously the first use
most people would have is to read
a text file, but it can equally as well
be used for a memory stream con-
taining text, or a BLOB, and so on.

Pretty good and very useful. The
next most obvious move is to
code a write-only text filter. We will

implement the Write method in the
usual way, and we’ll have to write a
WriteLine method to write a string
of characters, followed by the
end-of-line terminator. What’s this
going to be? In the read-only text
stream we were able to auto-detect
the end-of-line marker and deal
with it, but this time we can’t. The
class needs to know which type of
end-of-line marker to use: a CR/LF
or a single LF. An ideal job for a
property, which is what we’ll do.
We’ll be clever and have the
default calculated in the construc-
tor dependent on the platform on
which we’re compiling.

Apart from that, the WriteLine
method is very simple. We call the
overridden Write method to write
the passed string, and then we
write either a CR/LF character pair
or a single LF character. Listing 8
shows the write-only text filter,
TaaWriteTextFilter.

Debug Filter
Having written these text streams,
I can identify another useful filter:
a debug filter. This is a class
that logs each and every call to

the Read, Write and Seek methods
to a file for later perusal. This log
can be interesting to read and may
point out the need for buffering, for
example, or show up problems in
the use of a stream. The code is
trivial to implement: the Create
constructor opens up a log file that
you specify by name, using a
write-only text filter; the Destroy
destructor closes it; the Read
method logs the number of bytes
requested, and the number of
bytes actually read; the Write
method does a similar job as Read,
and Seek method logs the offset
and origin requested and the
returned position. Listing 9 shows
this class (note that it would be an
easy exercise to log the actual data
read or written as well).

Regex Filter
What next? A couple of months ago
I implemented a regular expres-
sion engine for matching patterns
to strings. This seems a natural
fit for the read-only text filter: a

type
TaaReadTextFilter = class(TaaReadBufferFilter)
{a read-only text filter}
private
FStrBuilder : TaaStringBuilder;

protected
public
constructor Create(aStream : TStream; aSize :
longint);

destructor Destroy; override;
function ReadLine : string; virtual;
function AtEndOFStream : boolean;

end;
constructor TaaReadTextFilter.Create(aStream : TStream;
aSize : longint);

begin
inherited Create(aStream, aSize);
FStrBuilder := TaaStringBuilder.Create;

end;
destructor TaaReadTextFilter.Destroy;
begin
FStrBuilder.Free;
inherited Destroy;

end;

function TaaReadTextFilter.AtEndOFStream : boolean;
begin
Result := FSize = Position;

end;
function TaaReadTextFilter.ReadLine : string;
const
CR = ^M;
LF = ^J;

var
Ch : char;
BytesRead : longint;

begin
{read characters until we get an LF}
BytesRead := Read(Ch, sizeof(Ch));
while (BytesRead <> 0) and (Ch <> LF) do begin
{if it's not a CR character, append it to the current
line}

if (Ch <> CR) then
FStrBuilder.Add(Ch);

BytesRead := Read(Ch, sizeof(Ch));
end;
{return the string}
Result := FStrBuilder.AsString;

end;

type
TaaLineDelimiter = ({possible line delimiters}

ldLF, {..line feed}
ldCRLF); {..carriage return line feed}

TaaWriteTextFilter = class(TaaWriteFilter)
{a write-only text filter}
private
FLineDelim : TaaLineDelimiter;

protected
public
constructor Create(aStream : TStream);
procedure WriteLine(const S : string);
property LineDelimiter : TaaLineDelimiter
read FLineDelim write FLineDelim;

end;
constructor TaaWriteTextFilter.Create(aStream : TStream);
begin
inherited Create(aStream);
{$IFDEF Win32}

FLineDelim := ldCRLF;
{$ENDIF}
{$IFDEF Linux}
FLineDelim := ldLF;
{$ENDIF}

end;
procedure TaaWriteTextFilter.WriteLine(const S : string);
const
cLF : char = ^J;
cCRLF : array [0..1] of char = ^M^J;

begin
if (length(S) > 0) then
Write(S[1], length(S));

case FLineDelim of
ldLF : Write(cLF, sizeof(cLF));
ldCRLF : Write(cCRLF, sizeof(cCRLF));

end;
end;

➤ Listing 7:
The read-only text filter.

➤ Listing 8:
The write-only text filter.

June 2001 The Delphi Magazine 61

descendant that will only return
lines that fit the specified regular
expression pattern.

This descendant also gives me
the opportunity to add a fix to my
latest regular expression engine
code. When I introduced the opti-
mization I discussed in the April
Algorithms Alfresco I managed to
add a bug whereby if the regular
expression started with an alterna-
tion (that is: this subexpression
OR that one) it would fail during
the matching process. The version
included on this month’s disk fixes
the bug.

Back to the regex filter class. We
shall need a regex property, of
course. This would need compiling
into the transition table form prior
to use. Apart from that, the
ReadLinemethod would be overrid-
den so that it calls the inherited
ReadLine method to read the indi-
vidual lines in the stream. Only
lines that match the regex will be
returned, so, in effect, the ReadLine
method would call the inherited
method until the line returned
matched the regex pattern. Apart
from that, the regex class imple-
mentation is fairly trivial. Listing 10
shows the class.

Encryption Filter
Let’s move away from text filters
for now and show another possibil-
ity for stream filters. Back in June
2000, I implemented DES encryp-
tion in Algorithms Alfresco. Let’s
reuse that code to create a
write-only filter that encodes data
when it’s written, and then
decodes it through a read-only
stream. We shall need to specify a

key to the Create constructor of
both classes so that we can encode
and decode the data when
required. Apart from that it seems
fairly easy, except that we must
remember that DES encodes data
in blocks of 64 bits (8 bytes).
Therefore, our Write method
needs to collect data in a buffer

type
TaaDebugFilter = class(TStream)
{a debug filter}
private
FLog : TaaWriteTextFilter;
FFile : TFileStream;
FStream : TStream;

protected
function dfGetOriginStr(aOrigin : word) : string;

public
constructor Create(aStream : TStream; const aLogName :
string);

destructor Destroy; override;
function Read(var Buffer; Count : longint) : longint;
override;

function Seek(Offset : longint; Origin : word) :
longint; override;

function Write(const Buffer; Count : longint) :
longint; override;

end;
constructor TaaDebugFilter.Create(aStream : TStream; const
aLogName : string);

begin
Assert(aStream <> nil,
'TaaDebugFilter.Create: the stream cannot be nil');

inherited Create;
FStream := aStream;
FFile := TFileStream.Create(aLogName, fmCreate);
FLog := TaaWriteTextFilter.Create(FFile);

end;
destructor TaaDebugFilter.Destroy;
begin
FLog.Free;
FFile.Free;
inherited Destroy;

end;
function TaaDebugFilter.dfGetOriginStr(aOrigin : word) :
string;

begin
case aOrigin of
soFromBeginning : Result := 'soFromBeginning';
soFromCurrent : Result := 'soFromCurrent';
soFromEnd : Result := 'soFromEnd';

else
Result := Format('Invalid origin [%d]', [aOrigin]);

end;
end;
function TaaDebugFilter.Read(var Buffer; Count : longint) :
longint;

begin
FLog.WriteLine(Format('READ: Count requested: %d',
[Count]));

Result := FStream.Read(Buffer, Count);
FLog.WriteLine(Format('Bytes read: %d', [Result]));

end;
function TaaDebugFilter.Seek(Offset : longint; Origin :
word) : longint;

var
OriginStr : string;

begin
OriginStr := dfGetOriginStr(Origin);
FLog.WriteLine(Format('SEEK: Offset: %d, Origin: %s',
[Offset, OriginStr]));

Result := FStream.Seek(Offset, Origin);
FLog.WriteLine(Format('Returned position: %d', [Result]));

end;
function TaaDebugFilter.Write(const Buffer; Count : longint)
: longint;

begin
FLog.WriteLine(Format('WRITE: Count requested: %d',
[Count]));

Result := FStream.Write(Buffer, Count);
FLog.WriteLine(Format('Bytes written: %d', [Result]));

end;

➤ Listing 9:
The debug filter. type

TaaRegexTextFilter = class(TaaReadTextFilter)
{a read-only regex text filter}
private
FRegexEngine : TaaRegexCompiler;

protected
public
constructor Create(aStream : TStream; aSize : longint; const aRegex :
string);

destructor Destroy; override;
function ReadLine : string; override;

end;
constructor TaaRegexTextFilter.Create(aStream : TStream; aSize : longint;
const aRegex : string);

begin
inherited Create(aStream, aSize);
FRegexEngine := TaaRegexCompiler.Create(aRegex);

end;
destructor TaaRegexTextFilter.Destroy;
begin
FRegexEngine.Free;
inherited Destroy;

end;
function TaaRegexTextFilter.ReadLine : string;
var
S : string;

begin
S := inherited ReadLine;
while (FRegexEngine.MatchString(S) = 0) do begin
if AtEndOFStream then begin
Result := '';
Exit;

end;
S := inherited ReadLine;

end;
Result := S;

end;

➤ Listing 10: The regex filter.

62 The Delphi Magazine Issue 70

and then encrypt it as it writes out
the data to the underlying stream.
The buffer can be as small as 8
bytes (a DES block) or as large as
we need. It makes sense to go for
the latter: that way we can encrypt
and write data in larger blocks. For
the read-only filter we can read and
decrypt in large buffers rather than
8 bytes at a time.

There is one small problem,
though. If you refer back to the
original article, you can see that
the final block (which may be
smaller than 8 bytes) goes through
a complicated bit of business with
the penultimate block during the
encoding. We may not be able to
fiddle with this penultimate block,
since it may have already been
written to the underlying stream.
So we need to be careful with how
we write the buffer out to the
stream.

The best solution is to always
keep a block in hand. When we
encrypt and write a buffer’s worth,
we in fact process the entire buffer
except for the last block. So if the
buffer is 8Kb in size, we encrypt
and write out 8,088 bytes and keep
the remaining 8 bytes in hand (a
single DES block) to start off the
next buffer’s worth. At the end,
when the filter is destroyed we
know we always have the penulti-
mate block ready for all the bit
twiddling and obfuscation we need
to do.

On reading we need to do the
same kind of processing; that is,
keeping a DES block in hand ready
for the final bit un-twiddling.

Window Filter
Another fairly handy filter that I’ve
wished for in the past is a filter that
only shows you part of another
stream. I call this a window filter.

It always seems that, when I
write a routine that processes data
in a stream, the first thing I code in
the routine is a Seek to position 0, to
reset the stream at the beginning.
What if the stream were already
positioned correctly at a particular
place? Well, I’ve messed it up. OK,
let’s remove the call to Seek at the
start of the routine. But, here I will
get the opposite problem: I always
have to remember to position the
stream at the correct place before
calling the routine. It seems I lose if
I do, and I lose if I don’t. Essentially
I cannot assume the routine is a
black box: I have to remember
whether the black box does or
does not reposition.

A better solution is to have a
filter that only exposes part of the
underlying stream, from a particu-
lar offset onwards. That way I can
position the underlying stream to
my heart’s content, create a
window filter over it, and pass the
filter to the routine. If the routine
resets the filter it won’t go back
before my desired position. If it

doesn’t reset the filter, I am still
covered.

To create a TaaWindowFilter
object we pass in the ‘zero’ posi-
tion of the underlying stream, the
offset that the filter is to call zero.
The Create constructor will, if nec-
essary, reposition the underlying
stream to this offset if the stream is
positioned before the zero posi-
tion. After that, the only method
we need to really work at is the
Seek method: we shouldn’t allow
seeks before the zero position
(even though there is data there)
and we should take care of seeks
from the end of the stream (since
the filter would be smaller in size
than the underlying stream). The
Seek method should also position
the underlying stream correctly
(by adding in the zero position
value to every seek, and subtract-
ing it from the return value).
Listing 11 shows this simple filter.

Summary
After this exploration into the
world of streams and filters, I hope
you see the possibilities in using
filters to alter the properties of any
stream. We don’t have to worry
about creating similar-looking
descendants of file streams and
memory streams, for example, we
just create a single descendant of
TStream and wrap it around any

type
TaaWindowFilter = class(TStream)
{a window filter}
private
FStream : TStream;
FZeroPos : longint;

protected
public
constructor Create(aStream : TStream; aZeroPos :
longint);

destructor Destroy; override;
function Read(var Buffer; Count : longint) : longint;
override;

function Seek(Offset : longint; Origin : word) :
longint; override;

function Write(const Buffer; Count : longint) :
longint; override;

end;
constructor TaaWindowFilter.Create(aStream : TStream;
aZeroPos : longint);

begin
Assert(aStream <> nil, 'TaaWindowFilter.Create: the stream
cannot be nil');

Assert(aZeroPos >= 0, 'TaaWindowFilter.Create: the zero
position cannot be negative');

inherited Create;
FStream := aStream;
FZeroPos := aZeroPos;
if (FStream.Position < aZeroPos) then
FStream.Seek(aZeroPos, soFromBeginning);

end;
destructor TaaWindowFilter.Destroy;
begin
inherited Destroy;

end;
function TaaWindowFilter.Read(var Buffer; Count : longint) :
longint;

begin
Result := FStream.Read(Buffer, Count);

end;
function TaaWindowFilter.Seek(Offset : longint; Origin :
word) : longint;

var
NewPos : longint;

begin
case Origin of
soFromBeginning :
NewPos := FStream.Seek(Offset + FZeroPos,
soFromBeginning);

soFromCurrent :
NewPos := FStream.Seek(Offset, soFromCurrent);

soFromEnd :
NewPos := FStream.Seek(Offset, soFromEnd);

else
Assert(false,
'TaaWindowFilter.Seek: invalid Origin value');

NewPos := 0;
end;
if (NewPos < FZeroPos) then
NewPos := FStream.Seek(FZeroPos, soFromBeginning);

Result := NewPos - FZeroPos;
end;
function TaaWindowFilter.Write(const Buffer; Count :
longint) : longint;

begin
Result := FStream.Write(Buffer, Count);

end;

➤ Listing 11: The window filter.

June 2001 The Delphi Magazine 63

stream. This wrapper class filters
the data in the underlying stream
in various interesting and useful
ways: I’m sure you’ll find others.

Julian Bucknall is a spare time
Shakespeare scholar. Email him at
julianb@turbopower.com
The code that accompanies this article
is freeware and can be used as-is in
your own applications.
© Julian M Bucknall, 2001

	Introduction
	Writing Filters
	Buffering Filters
	Text Filters
	Debug Filter
	Regex Filter
	Encryption Filter
	Window Filter
	Summary

